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Flotation as a kinetic and thermodynamic phenomenon is a random process. The random variable 
determining the number of particles in flotation, attached permanently to the bubble surface, and 
consequently also the recovery, depend on time. Numerous models of flotation kinetics have been 
worked out to describe this dependence. Each of these models covers in fact a separate aspect of the 
problem but they complement each other. The paper presents a detailed analysis of the models based 
on the kinetics of chemical reactions and on the model of chemical absorption. It results from analysis 
of these models that in the case of flotation of the feed which is non-homogeneous with respect to 
flotation properties in the initial moments of the process, the particles undergoing flotation have the 
highest flotation properties according to the equation of zero order and, next, according to the 
equation of 1\2 order. With time, the particles of decreasing ability to flotation undergo flotation and, 
simultaneously, the order of flotation kinetics increases. Narrow size-and-density coal fractions of 
intermediate floatabilty (type 33 of Polish classification) float according to the first order kinetic 
equation. From the theoretical point of view they can be assumed to be a homogenous material with 
respect to flotation properties. 
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INTRODUCTION 

 
Flotation as a process resulting from selective adhesion of mineral particles to air 

bubbles is both a thermodynamic and kinetic phenomenon. Kinetics, the course of the 
process in time, is affected by potential interactions of electromagnetic type between 
the mineral particle and the bubble. The interaction is necessary for adhesion. It is a 
random variable, and it also results from the successive inflow of the free surface in 
the form of air bubbles into the flotation system. The free surface is the place of 
adhesion of mineral particles and it limits, among others, the velocity of the process. 
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The random character of interactions results from the fact that the particle surface 
properties determine the interaction and these properties change not only from one 
particle to another but they can also within the surface of the same particle. 

To obtain a permanent adhesion of particle and bubble, the particle must overcome 
the energy barrier of the particle-bubble interaction. This phenomenon is of random 
character because of the random character of collision and the angle of collision of the 
particle with the bubble, as well as the random value of particle kinetic energy 
necessary to rupture of the thin film between particle and the air bubble. Apart from 
the above phenomena, the attached particle, especially the larger ones, can be 
detached from the bubble surface by external forces, present in the flotation chamber, 
the source of which originates from turbulences of the medium. This process is also of 
random character. 

The process of bubble mineralization can be also considered as the adsorption 
process in which  the role of adsorbent is played by the bubble surface while mineral 
particles fulfill the role of adsorbate. This is a selective adsorption whose selectivity 
depends on the interface energy, determined by surface properties of particles and the 
reagent system. 

Due to the multi-topic character of problems determining the flotation course and 
affecting the  process of mineralization of air bubbles, many authors dealt with the 
problem of flotation kinetics in the last several decades (Zuniga, 1935; Schuhmann, 
1942; Sutherland, 1947; Pogorelyj, 1961ab, 1962, Melkich, 1963a, 1963b, 1964; 
Bogdanov et al., 1964; Volin and Swami, 1964; Bodziony, 1965; Zeidenberg et al., 
1964; Harris and Rimmer, 1966; Loveday, 1966; Tille and Panou, 1968, Kapur and 
Mehrota, 1973, 1974; Mehrotra and Kapur, 1974, 1975; Trahar and Warren, 1976; 
Collins and Jameson, 1976; Harris, 1978; Maksimov and Emelianov, 1983; Xu 
Changlian, 1985; Szatkowski and Freyberger, 1985a,b; Vanangamudi and Rao, 1986; 
Lazic and Calic, 2000; Brozek and Mlynarczykowska, 2006). Many models of 
flotation kinetics were developed, from the deterministic and adsorption models to 
statistical and stochastic ones, out of which each dealt with another aspect. 

This paper presents a critical analysis of the model based upon the model of 
kinetics of chemical reaction and the model of adsorption. This analysis has been 
supported by the example of flotation kinetics of narrow coal density fractions. 
 
 

MODEL OF KINETICS OF CHEMICAL REACTION 
 

The first kinetics model of batch flotation  was proposed by Zuniga (1935). He 
applied the differential equation of kinetics of chemical reaction which, in its general 
form, can be written as: 
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−=
d
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  (1) 
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where: C(t) – concentration of floating particles remaining in the flotation chamber up 
to the moment t, k – flotation rate constant, n – constant characterizing the order 
character of the process (order of flotation kinetics). 

Equation 1 represents flotation kinetics of particles which are homogeneous from 
the point of view of surface properties, the so-called equally well floating particles 
which have the same value of the flotation rate constant. 

The solution of Eq. 1, with the initial condition:  C(t=0) = Co, is as follows: 
 

 ( )[ ] n1
1
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where  Co  denotes the initial concentration of particles under flotation in the flotation 
chamber.  

The recovery of the particles in the froth product ε  after time  t  is, from the 
recovery definition, equal to 
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According to Eqs. 2 and 3, the term C/Co and recovery ε are expressed by the 
formulas: 
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The limit values ε(t)  for  n > 1 are 
 
 

∞→
=

t
t 1)(lim ε . (6) 

 
It means that after a long time of flotation all particles will have undergone 

flotation. In the general case, especially for larger and more difficult-to-float particles, 
it does not have to be so because despite the adhesion process of particles to air 
bubbles, a reverse process occurs (of lower intensity), i.e. detachment of the particles 
from the surface of bubbles into the pulp (Mika and Fuerstenau, 1968; Schulze, 1977; 
Woodburn et al., 1971; Stachurski, 1970; Schulze, 1992; Maksimov and Emelianov, 
1983). Accordingly,  in the state of equilibrium, the value of recovery after a long time 
of flotation is smaller than 1 and equals  ε∞. After imposing the following condition 
upon Eq. 5 
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the dependence of recovery on time is: 
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Equations 5 and 8 represent a general formula of flotation kinetics of n order, 

obtained from the solution the differential equation of chemical reaction kinetics. 
  

ADSORPTION MODEL OF FLOTATION KINETICS 
 

From the physical point of view, the process of flotation is closed to the process of 
adsorption (Pogorelyj, 1962). The role of adsorbent is played by air bubbles (bubbles 
surface) while the role of adsorbate by mineral particles. Analogically, as in the 
process of adsorption (Oscik, 1973),  the time of contact of particle with air bubble, 
leading to the stable connection of a particle with a bubble (induction time), is very 
short.  

Adsorption occurs on the bubble surface, and therefore the number of mineral 
particles attached (adsorbed) to bubbles is proportional to the free, still not 
mineralized, surface of bubbles. For the material, homogeneous from the point of view 
of flotation properties, the mass of particle attached to the bubbles surface in time dτ  
is: 

 
 dm = λ s C dτ   (9) 
 
where: λ - mineralization (adsorption) rate constant (mass of particles adsorbed for a 
bubble surface unit in a unit of time),  s – free surface of bubbles coming to the 
flotation chamber in the unit time, τ - time of remaining of a bubble in the flotation 
chamber, C –  volume concentration of particle in the flotation chamber. 

As a result of mineralization, the free (not mineralized) surface of bubble 
decreases. The decrease of this surface in a unit of time is equal to: 
 

 ms d1d
α

=−  (10) 

 
where: α -mass of particles adsorbed by the bubble surface unit. From Eqs. 9 and 10 
we obtain: 

 τ
α

λ dd Css −=  (11) 
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After solving Eq. 11, at the initial condition  s(0) = so  we obtain the dependence: 
 

 ⎟
⎠
⎞

⎜
⎝
⎛−= τ

α
λ Css o exp  . (12) 

 
The mineralized surface in a unit of time will be expressed by the formula: 
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According to the above, the decrease of mineral mass from the flotation pulp in time 
dt  is: 
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If the volume of the flotation chamber is V then  dm = V dC  and from expression (14), 
the following equation is obtained: 
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The integer on the left side of expression (15) is equal to (Gradstein and Ryzik 1971): 
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After integrating the entire expression (15) and transforming it, the following 

dependence is obtained: 
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where D  is the constant of integrating, calculated from the initial condition  C(0) = Co. 

After calculating constant D and substituting into Eq.17, the following equation is 
obtained: 



M. Brożek, A. Młynarczykowska 56 

 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+⎟
⎠
⎞

⎜
⎝
⎛−⎥

⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛ 1exp1expexp t

V
sCC oo τλ

α
τλ

α
τλ . (18) 

 
From Eq.18 we obtain the dependence of volume concentration of particles in the 

flotation chamber upon time: 
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The recovery of the floated mineral in the froth product after flotation time t, 

according to Eq. 3 will be:  
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It results from Eq. 20 that the recovery depends on the volume concentration of 

particle in the flotation chamber Co, flotation properties of particle measured by value 
λ, size of free surface of bubbles so,  and flotation time  t. 
 
 

ANALYSIS OF FLOTATION KINETICS MODELS 
 

KINETICS EQUATIONS OF ZERO AND  ½ ORDER 
 

Particular cases of kinetics equations of zero and ½ orders, based on the model of 
chemical reaction, can be obtain by means of formal setting the order of kinetics in 
Eq. 5 or by a series expansion of the general equation of flotation kinetics.  

From Eq. (5) for n = 0 we obtain the following dependence: 
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Therefore, it is a rectilinear dependence. The  rate constant in this case is: 
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Subsequently, with the increase of the initial volume concentration of particle, the 

rate constant of flotation increases because  .
d
d const

t
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ε  It results from Eq. 21 that the 
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recovery reaches the maximum value of 1, theoretically after the finite flotation time 

equal to 
k

Ct o
m = . It means that if the flotation of equally floating particles occurs 

according to the equation of zero order, there is no equilibrium detachment from air 
bubbles.  

Equation 21 can be obtained from Eq. 5  in a different way. The expression in the 
square brackets of Eq. 5 is a binomial in relation to variable t.  For small values of 
flotation time t, the second component of the binomial is small.  The extension of 
binomial into a power series for  ⎢x ⎢< 1 is as follows (Leja 1971): 
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Leaving two terms of extension in Eq. 5 we obtain: 
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It is therefore possible, according to Eq. 24, to express an opinion that at initial 

moments of flotation, it always runs due to the rectilinear dependence. This equation 
for n = 0  is transformed into Eq. 24. Substituting the value ½  for  n in Eq.5 we obtain 
the following dependence of recovery on time:  
 

 
oo C

tk
C

tkt
4

)(
22

−=ε . (25) 

 
The dependence  ε(t),  according to Eq. 25 is presented by a section of a parabola. 

Recovery reaches the maximum value after time  
k
C

t o
m

2
= , equal  εmax = ε(tm) = 1. 

Therefore, similarly  to the kinetics of zero order, there is no detachment of particles 
in the sense of a stochastic process. The equation of kinetics of   ½ order, analogically 
to the former case, can be obtained from a general Eq. 5 by a series expansion. 
Expanding the expression included in the square bracket of Eq. 5 and considering 
three terms of expansion, the following dependence for  ε(t)  is obtained: 
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which for  n = 0.5  can be transformed into dependence given by Eq. 25. It can be 
therefore said that for each flotation process there is a time range in which the 
recovery depends on time, according to the ½ order  kinetics equation. If, for obtaining 
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Eq. 26, the three term of expansion should be taken into consideration to get the 
required accuracy, it means that the interval of process duration in which flotation 
occurs according to the kinetics equation of  ½ order  must be longer than in the 
kinetics of zero order. Hence, it can be concluded that after flotation according to the 
kinetics equation of zero order the process runs according to the equation of  ½ order.  

Successively, the analysis of the kinetics model based on the process of adsorption 
leads to the following observations. In the initial moments of flotation, i.e. small value 
of time t, high volume concentration of particle in the flotation chamber C, not very 
much different from Co, high value of λ  since, first of all, the particles of the highest 
floatabilty are floating and at low of the surface accessible for adsorption in the time 
range τ , because the bubbles are quickly mineralized by the easily floating particles, 
Eq. 20 can be transformed as follows. For small values of  so and  t , 
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of recovery upon the time of flotation is: 
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where: 
V
sk oα

= . Therefore we obtain the kinetics equation of zero order, analogical 

to Eq. 21. It can be said that according to the kinetics equation of zero order the 
particles which undergo flotation are the most easily floatable (of the highest λ 
values), which mineralize quickly the surface of the bubbles and consequently, the 
free surface of the bubble, accessible for the adsorption of consecutive particle in the 
time range τ , i.e. the time of the bubble remaining in the flotation chamber is small at 
large values of λ  and  C, according to Eq.12. 
 

KINETICS EQUATION OF  THE FIRST  ORDER 
 

The kinetics equation of the first order will be obtain from Eq. 8 by means of the 

transition with the order of equation n  to 1. Denoting  m
n

=
−1
1 , Eq.8 can be written 

as the following function sequence: 
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If  n  heads for 1,  then  m  heads for infinity. Hence, the limit of the function sequence  
εm(t)  is: 
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because the expression with square brackets in Eq. 29 heads for  e-k t (Co

-1/m → 1). This 
is the form of the kinetics equation which is most often applied for investigation of 
flotation kinetics. As it can be seen from Eqs.8 and 30, only in the case of flotation 
kinetics of the 1st order the course of dependence of recovery upon time does not 
depend on the initial concentration of particles in the flotation chamber. This is a 
criterion stating that for a given raw material,  under given physicochemical 
conditions, flotation occurs according to the kinetics equation of the first order 
(Loveday, 1966). It results from the adsorption model of flotation kinetics that after a 
long flotation time t, i.e. low volume concentration of particles and low value of λ,  
the free surface, accessible for adsorption, is larger according to Eq.12. Under these 
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Expanding the logarithmic expression into a series and considering the 1st 

component of expansion, Eq. 31 simplifies to the form: 
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The equation of kinetics of the first order is obtained. Therefore flotation according 

to the kinetics equation of the first order runs after a longer flotation time in the 
conditions of lower concentration of particles in the flotation chamber, larger free 
surface of the bubble in the time τ  and lower values of λ.  
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EQUATIONS OF KINETICS OF HIGHER ORDERS 
 

Higher orders of kinetics equations are obtained from the basic equation  
(Eq. 8) after substituting a proper value for n. 
a) kinetics equation of the 1.5th order:  
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b) kinetics equation of the 2nd order: 
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c) kinetics equation of the 3rd order: 
 

 
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

+
−= ∞

tkC
t

o
221

11)( εε  (35) 

d) kinetics equation of the 4th order: 
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e) kinetics equation of the 5th order: 
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f) kinetics equation of the 6th order: 
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Pictorial ε(t)  dependence for the above models are shown in Fig. 1. 
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Fig. 1. Pictorial dependence of flotation recovery on time for kinetics orders from n = 0 to n = 6 

 
ORDER OF FLOTATION KINETICS 

 
In the model of flotation kinetics of the first order based upon the kinetics of 

chemical reaction the model parameters are the flotation rate constant and equilibrium 
recovery while in the stochastic model the parameters are the permanent adhesion rate 
constant and the detachment rate constant of the particle from the bubble (Brozek and 
Mlynarczykowska, 2006). In the stochastic model both the equilibrium recovery and 
the flotation rate constant (constant of resultant adhesion) are connected by function 
with the constants of adhesion and detachment. In both cases these are the two-
parameter models. The constants of adhesion and detachment are expressed by 
probabilities of collision, adhesion and detachment of the particles from the bubble 
which, respectively, are connected whit geometrical and surface properties of particles 
as well as physicochemical and hydrodynamic conditions in the flotation chamber. In 
the model of flotation kinetics of the n-th order (Eq. 8), apart from the flotation rate 
constant and equilibrium recovery, the third parameter occurs, i.e. the order of 
flotation kinetics. For the flotation carried out under conditions when the surface 
accessible for adsorption is large (free flotation) Pogorelyj (1962) presented the 
following expression for the order of flotation kinetics: 
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where: λ - average value of the adsorption rate constant of particles at the 
concentration of particles  in the flotation chamber C, λo. – average value of the 
adsorption rate constant at the initial moment. Melkich (1964) worked out an 
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analogical expression for the order of flotation kinetics, starting from the statistical 
theory of flotation: 

 2
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λ
σ

+=n  (40) 

 
where: σ2 – dispersion (variance) of flotation properties around the average value. It 
results from Eqs. 39 and 40 that only for the feed strictly homogeneous with respect to 
flotation properties, the order of flotation kinetics is equal to 1, since λ = λo  and  σ2 = 
0. However, such a distribution of flotation properties of the feed is exclusively 
theoretical in character because even in the narrow size fraction of the pure mineral 
the distribution of induction time is connected with the statistical distribution of 
adsorption density of the reagent on the particle surface (Schulze, 1992) and also with 
the distribution of particle shape and size. Consequently, even for pure minerals, the 
adhesion rate constant, and also the order of flotation kinetics, will be characterized by 
fixed distributions. The investigations of flotation kinetics of pure minerals of narrow 
size fraction proved that under conditions of free flotation, i.e. when the surface of 
bubbles is not a limitation for their mineralization, the flotation results are consistent 
with the equations of the first order (Pogorelyj 1961 a,b; Tomlinson and Fleming, 
1963). 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0 2 4 6 8 10 12 14 16 18 20
flotation time, t  [min]

re
co

ve
ry

 , 
ε

(1.3-1.5)
(1.5-1.7)
(1.7-1.8)
(1.8-2.0)
>2.0 
<1,35

 
Fig.2. Flotation kinetics (Brozek and Mlynarczykowska, 2006): 

density fraction <1.35[ Mg/m3] , A=1.06 %, ε =0.63(1-e-0.245 t),λ0 =0.154 [1/min], 
density fraction (1.35-1.5) [Mg/m3], A = 7.91%, ε = 0.48(1 – e-0.249 t), λ0=0.12 [1/min], 

density  fraction (1.5-1.7) [Mg/m3],  A=23.18 %, ε = 0.41(1 – e-0.25 t),   λ0=0.102 [1/min], 
density fraction (1.7-1.8) [Mg/m3], A= 36.32 %, ε = 0.30(1 – e-0.246 t),  λ0=0.074 [1/min], 
density  fraction (1.8-2.0) [Mg/m3], A=48.71 %,  ε = 0.20(1 – e-0.245 t)  ,λ0=0.079 [1/min], 

density fraction >2.0 [Mg/m3], A=77.63 %, ε = 0.12(1 – e-0.249 t),  λ0=0.03 [1/min] 
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Also the investigations of flotation kinetics of narrow size-and-density fractions of 
intermediately floating coal type 33 proved that the result of flotation fulfill the 
equation of the first order. Figure 2 shows the curves of flotation kinetics of narrow 
size-and-density fractions of coal type 33 (Brozek and Mlynarczykowska, 2006). The 
index of curvilinear correlation, evaluating the rate of agreement of the model with the 
experiment is larger than 0.96. Therefore it can be said that according to Eq. 40 the 
rate of non-homogeneity of flotation properties of particle forming narrow size-and-
density fractions is within the limit of experiment error and is negligibly little. If the 
feed is non-homogenous with respect to its flotation properties,  as mentioned before, 
at first the particles of the highest floatability undergo flotation. Respectively, the 
average value of flotation properties of particle remaining in the flotation chamber 
decreases with time and also the concentration of floating particles changes.  

Therefore, the order of flotation kinetics changes. According to Bogdanov (1959), 
the order of flotation kinetics changes during the process from 0 to 6 (Bogdanov 1959, 
according to Pogorelyj 1962). On the other hand, however, there are no theoretical 
premises stating that in a wide time range the flotation process of the non-
homogeneous material will run according to the equation of a fixed order.  
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 Brożek M., Młynarczykowska A., Analiza modeli kinetyki flotacji cyklicznej. Physicochemical 
Problems of Mineral Processing, 41 (2007) 51-65 (w jęz. ang.). 
 

Flotacja jako zjawisko kinetyczne i termodynamiczne jest procesem losowym. Zmienna losowa 
oznaczająca liczbę ziaren flotujących, przyczepionych trwale do powierzchni pęcherzyka, a w 
konsekwencji i uzysk, są zależne od czasu. Dla opisu tej zależności opracowano szereg modeli kinetyki 
flotacji. Każdy z tych modeli ujmuje wprawdzie inny aspekt zagadnienia, lecz modele te się wzajemnie 
uzupełniają. W tym artykule podano szczegółową analizę modelu opartego na kinetyce reakcji 
chemicznej oraz na modelu absorpcji chemicznej. Z analizy równań tych modeli wynika, że w przypadku 
flotacji nadawy niejednorodnej pod względem własności flotacyjnych, w początkowych chwilach trwania 
procesu flotują ziarna o najwyższych własnościach flotacyjnych według równania rzędu zerowego a 
następnie według równania rzędu ½. W miarę upływu czasu flotują ziarna o coraz niższych własnościach 
flotacyjnych i zwiększa się zarazem rząd kinetyki flotacji. Wąskie klaso-frakcje węgla o średnich 
własnościach flotacyjnych (typ 33) flotują według równania kinetyki rzędu I. Można więc z 
teoretycznego punktu widzenia uznać je za materiał jednorodny pod względem własności flotacyjnych. 


